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In this paper we compute the motion and the shape of the free surface on a liquid 
in a trench heated from its side. The analysis is based on Joseph’s Lagrangian 
theory of domain perturbations, which is developed in general and through 
simple examples, chosen so as to make the comparison of the Lagrangian method 
with Stokes’s Eulerian theory very clear. The perturbation problems are resolved 
analytically by application of biorthogonality conditions to a powerful set of 
biharmonic eigenfunctions. 

1. Introduction 
When the side walls of an open trench filled with liquid are maintained a t  

unequal temperatures, the liquid will circulate owing to the driving action of 
buoyant forces induced by density variations. The motion in the trench distorts 
the free surface. We are interested in finding qthematical  expressions to 
describe the motion and the shape of the free surface. We are going to construct 
the solution of this basic problem as power series in the temperature difference 
across the trench, which is pivoted about the state of rest that prevails when this 
temperature difference is zero. 

There are several variations of our basic problem. I n  the first, we shall consider 
an infinitely deep rectangular trench, which is filled with liquid right up to the 
top. The second is the same as the first, except that the trench has a flat bottom. 
In these two variations the affinity which liquids have for sharp edges is idealized 
by requiring that the free surface pass through the edges a t  the top of the trench. 
(See figure 6.) Our methods work equally well when the trench is partially filled 
with water; but then, to make things work out simply; we must prescribe an 
angle of horkontal contact. 

To study the free-surface problem, we use the Lagrangian theory of domain 
perturbitions. This theory can be used to  find solutions of boundary-value 
problems, like the membrane problems studied by Hadamard (1908), in which 
the perturbed domains are prescribed but the solutions are not; and the method 
can be used for free-surface problems, like the water-wave problems studied by 
Stokes or like the problem studied here, in which the shape of the free surface is 
to be determined. The Lagrangian formulation of theory of domain perturbations 
was developed by Joseph in a series of papers starting in 1967. In  the most recent 
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formulations (1973,  1974), one imagines a one-parameter family of domains, on 
which the field equations and boundary conditions are to be solved. The solution 
is presumed to be known in some reference domain. It is convenient, but not 
necessary, to imagine that the solution in the perturbed domain can be developed 
in a power series in the parameter, the coefficients being substantial derivatives 
of the field variables evaluated in the reference domain. To compute these 
derivatives, the deformed domain is first mapped onto a reference domain; in the 
end, the mapping is inverted, and the derivatives of the solution with respect to 
the parameter are computed in the deformed domain. 

Joseph’s theory is called Lagrangian, because it relies heavily on a mapping 
which is analogous to a inaterial mapping; but, of course, a domain mapping is 
not necessarily a material mapping. Stokes’s (1847) theory? can, in the same 
spirit, be called ‘Eulerjan’, since that theory can be interpreted as applying 
always to the motion in the deformed domain. In fact, it is very hard to say very 
much about Stokes’s theory, because some parts of it are worked in the deformed 
domain, and some in the reference domain. The domain of definition of the 
functions is almost never defined, neither is it intuitively obvious. Readers who 
come to this paper with just a little experience of the literature on water waves 
will immediately recognize the basic procedure of Stokes’s theory. First the 
solution is expanded in powers of F in the deformed domain. This leads to  the 
governing equation, which in water-wave theory & usually taken as Laplace’s 
equation.$ The boundary conditions are then expanded in a power series in the 
space variables around some mean position, say a plane. The boundary conditions 
are then applied on the mean surface, whether or not there is water there, and 
without regard for the fact that t’he derivation of the equations has already 
implied a different domain of definition for the 6;mctions. To our knowledge, 
these difficulties, which are perhaps better recognized by amateurs than by 
experts, who after long years of practice may achieve perfect insensitivity to 
difficulties, were first discussed in Joseph (1  973).$ I n  the 1973 paper, it was shown 

t See Stoker (1957) or Wehausen & Laitono (1900) for popular.and authorativc accounts 
of Stokes’s theory. It is no surprise that Stokes’s original paper is not less clear than later 
expositions of his theory. But Stokes’s is not surpassingly clear. 

$ We want ta  stress the obvious fact that Laplace’s equation arises only in a special case. 
When you have Laplace’s equation in two dimensions, you can do a lot of beautiful things 
with complex variables that cannot be done generally. It is no surprise that existence proofs 
for wave problems are nearly all confined to the complex variablo case x + iy  = f( 4 -+ i$), 
which reduces the problem to  a fixed domain. (See Levi-Civita 1925; Struik 1926.) These 
proofs are beside the point here. They apply only in a too special situation; in any case, 
they have, only the most oblique connexion with Stokes’s theory. On the other hand, 
Sattinger’s (1975) proof, of convergence of the Lagrangian series for the free surface 
on a Newtonian liquid between cylinders rotating a t  different speeds (Joseph & Fosdick 
1973), is very much to the point. Sattinger’s demonstration shows that tho series con- 
verge, and the solution is regular at  the corner when a flat contact angle is prescribed a t  the 
boundary. Questions of convergence and regularity of the solution when the contact is other 
than flat are still open. 

3 A summary of difficulties in interpreting Stokes’s theory follows. (i) The derivation of 
the governing equations leaves the domain of the functions ambiguous. In  the end, only 
functions which arc defined in the reference configuration are computed. (ii) There is no 
prescription about how to compute the solution in the deformed domain where the solution 
is wanted. 
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that Stokes’s theory was consistent with Joseph’s, given a certain analytic 
continuation of functions originally defined on the reference domain into the 
deformed domain. I n  this paper, we are going to show that the substantial 
derivatives of the solution following the mapping can be computed in the 
deformed domain in a simple and natural way by merely inverting the mapping, 
and that analytic continuation of functions defined on the reference configuration 
is never required. By using the mapping principle, we can calculate several 
solutions in the physical domain from a single solution in the reference domain. 
(See figure 6.) 

The Lagrangian theory of domain perturbations is developed in the context of 
the trench problem in 3 3. There are two roads from $3.  One goes to the trench 
problem. The other goes t o  an extremely simple made-up problem (in the 
appendix), designed to yield the main ideas of the mapping principle without 
a lot of complicated equations. Mathematically, the made-up problem is in no 
way inferior to any other; it is just simpler. 

The application of the domain perturbation theory to the trench problem leads 
us, in 3 4, to a biharmonic problem, related to the problem of computing stresses 
in a thin semi-infinite strip clamped a t  its sides. The stress problem has been 
solved in terms of a ‘Fourier’ series of biorthogonal eigenfunctions (the 
Pspliovich-Fsdle functions) by Smith (1952) and by Johnson & Little (1965). 
The methods used by these authors are very powerful in solving edge problems 
that arise in fluid-filled cavities with and without free surfaces. Smith’s formula- 
tion is particularly convenient, and has been extended by Joseph (1974) to the 
cylindrical equivalent of the edge problem that arises in the study of the free 
surface on the edge of the liquid filiing a torsion flow viscometer. Despite the 
apparently great differences between our problem and the torsion flow problem, 
they are mathematically alike, and in special limits they coincide. We believe 
that our application of these methods to the problem of a free surface on a liquid 
filling a trench of finite depth is new, and could be applied to finite-strip problems 
arising in the linear theory of elasticity. We find that the tap and bottom of a 
trench of finite depth do not interact, when the depth-to-width ratio is greater 
than about 3. 

2. Mathematical formulation 
We consider the steady motion OF a Newtonian liquid in a long open trench of 

width d and length L. The liquid fills the trench up to a mean height D ;  i.e. the 
total volume of the liquid is DdL. We let L -> co, and treat a two-dimensional 
problem in a rectangle, which is open a t  the top. Co-ordinates (x, x )  are located 
relative to  a centre midway between the walls a t  a height D from a flat bottom. 
The pressure of the atmosphere a t  the top of the trench is pa,  and the reduced 
pressure in the fluid is designated as 

p ( x ,  z )  is the pressure in the fluid, p is the density and g is the acceleration due to  
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gravity. Since the fluid is incompressible, the area Dd occupied by the fluid is an 
invariant, and the free-surface height 

must have zero mean value 
z = h(x) 

The temperatures on the walls a t  x = ad and x = - i d  are To + €and To, respectively. 
We shall assume that the bottom of the trench is insulated; and, since the thermal 
conductivity of liquids is generally so much greater than that of air, the free 
surface of the liquid-air interface is also assumed to be insulated. We designate 
the temperature as T(x ,  z )  = O(z, z )  + To, the solenoidal velocity by u = e,u + e, w, 
the stress deviator by S = 2 p D [ ~ ] ,  where D is the stretching (‘rate of strain’) 
tensor andp is the viscosity. The variables O(x, z) ,  ~ ( x ,  z )  and @(x, z )  are defined on 

= K[x,  21; - i d  6 x B gd, - D < z 6 h(x; e)]. 

The dependence of the free surface h(x; E )  on the temperature difference E is to be 
determined. On the free surface, the normal component of the velocity vanishes: 
u.n = 0. The normal component of the temperature gradient vanishes: 
n . V T  = 0. The shear stress vanishes: X,, = 0. The normal component of the 
stress jump is balanced by surface tension 

Sn,-p+pp, = Xnn- cD-tpgh = ~ [ h ’ / ( i  +h’2)*]’. 

We shall assume that the fluid sticks to a sharp edge or makes a flat contact with 
the vertical walls: h( f i d )  = 0 or h’( & ad) = 0. The Oberbeck-Boussinesq 
equations? are assumed to govern the motion in Ye: 

p u  . V u  = - VcD + e, pgpl0 +pVzu,  u . Vf? = K v 2 0 .  (2.1) 

cc and p are the coefficients of thermal expansion and diffusion, respectively. 

we define two sets of functions A, and B :  
Now we shall summarize the governing equations. As a notational convenience, 

A, = [u(x,z),O(x,z)lV.u = 0 in K ,  u( i d , z )  = 0, 

U(X, - D) = 0, 8( - i d ,  Z )  = 0, a0/&lg=-D = 01, 

We shall seek solutions 

[u(x,z),O(x,z)] in A ,  and O ( X , Z )  (2.2) 

of (2.1), for which O(+d,z; E )  = €, (2.3) 
ao ao 
a2 ax 
--h‘- = 0, w-h‘u = 0, and, on z = h(x; e ) ,  (2.4) 

(S,,-X,,)h’+(1-h’2)X,z = 0, Xzs-h‘Sa,-O = v[h’/(i+hf2)6]’-pgh, (2 .5 )  

where h e B .  (2.6) 
t Although a Newtonian fluid is assumed, any rheologically complex fluid, whose stress 

is expandable in a power series of Rivlin-Ericksen tensors, could just as well have been used. 
All such fluids are Newtonian t o  the order to which our calculations have been carried out. 
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The problem (2.1)-(2.6) is nearly intractable, because it is nonlinear and is posed 
on a domain whose shape must be determined as part of the solution. 

3. The Lagrangian theory of domain perturbations 
Tostudy the problem (2.1)-(2.6) whens + 0, we first map Yeonto thereference 

domain V,, of the rest solution. We then expand the mapped probIem in a power 
series, determine the coefficients of the series relative to  the rest state, and discuss 
the problem of representing the solution in the deformed domain where the 
physical problem is defined. The discussion is best carried out in three parts: 
properties of the mapping ( 5  3.1); the series solution, and the unique determina- 
tion of the boundary values of the mapping ( 3  3.2); representations of the solution 
in < ( 5  3.3). 

3.1. Properties of the mapping 

We define the mapping (x ,  z )  --f (xo, zo) such that 

x = x,,, - i d  < x < &d; ( 3 . 1 ~ )  

(3.1b) 

The mapping (3.1) is to be one-to-one, carrying boundary points to boundary 
points: 

h(x, D; e) = x(xo, 0, D; E )  ( 3 . 1 ~ )  

and -D = X(X0, - D ;  D; 6 ) .  ( 3 . l d )  

We also want the mapping to be analytic in E and uniquely invertible: 

z = z ( x ~ ,  20, D; E ) ,  - D < z < h(x, D; E ) ,  -D < z0 < 0. 

zo = xo(x,  2, D; 8 ) .  (3.1e) 

This is a very general mapping of c-q, and it is not uniquely determined; 
we could work the theory for yet more general mappings. The strong requirement 
of analyticity can be relaxed for approximate solutions; then we would consider 
asymptotic representations with truncated power series. 

We are going to  show (in 5 3.2) that the perturbation problems determine a 
unique function h(x, D ;  e), and that the solution in the deformed domain is 
independent of the choice of the function x. Given the uniqueness of h, we are 
assured that it is possible to construct and use the linear scaling transformation 

z(x,, z,,, D ;  E )  = h(xo, D; E )  + [h(xo, D; e) +D] zo/D. ( 3 . 2 ~ )  

This transformation has a simple form when the co-ordinates are reckoned from 
the bottom of the trench. Ifx = y-  D, z,, = yo- D ,  h = h-  D, then 

Y = YohID. (3.2b) 

This apparently special mapping is homogeneous of degree one in the variables 
h, z,, and D ;  depends on x,, and c through h; and has the property that 
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is the mean value of X. I n  the limit D --f 00 the linear scaling transformation 
reduces tjo 

We call (3.3) a linear shifting transformation. 

x(x,, 2,; e )  = h(x,; E )  +x,. 13.3) 

3.2. The series solution and unique determination of the 
boundary values of the mapping 

Functions $(x, z ;  e )  defined in are of the form $(xo,x(xo, z,, D; e ) ;  e )  when 
mapped onto Yo by (3.1).  For these mapped functions, we define the partial 
derivative holding z(xo, z,, D; e)  fixed: 

We also define a substantial derivative following the mapping: 

I 
(3.4) I 

$[Ol = $09, 

$r[4 = $0) +X[ll$$), 

$t21 = $W + 2#l$$) +#I$$) +&I%$$;, 

$[31 = $(3) + 3x[21$<;> + 3X[11$r<2) ,z +z[3~@) 

+ 3z[112$02 + 3z[i~x[z~$$2 +&13$$2~, 

etc. Since x, and zo do not depend on e, and z = ~ ( x , ,  2,; D; e) ,  we have 

&I = x(7L) and h[nl = h<n). 

The substantial derivative is an important operator in the Lagrangian theory, 
because solutions defined in the mapped domain are to be expressed in a power 
series, whose coefficients are substantial derivatives evaluated in Yo: 

U(X, 2 ;  e). 
@(x, 2 ;  €1 
@(x, z ;  e )  
h ( x ; e )  . 

Dependence on the parameter 
problems satisfied by coefficient: 

(3 .5 )  

D has been suppressed. The boundary-value 
in (3.5) are very complicated (see Joseph 1967); 

but a major simplification of them is possible (Joseph 1973). This simplification 
allows one to compute the partial derivatives [dn), O ( T t ) ) ,  @(n), h(%)] from much 
simpler problems. We discuss this simplification next. 

?Ve first note that the field equations (2.1) and V .  u = 0 hold in < and for an 
e interval around e = 0. For example, consider the equation V . u = 0. Since this 
is an identity in E ,  for small c dn - (V.u) = 0. 

den 

Since it is also an identity in <, we have that,, for each and every integer n 2 0, 

(3.6) 
dn 
- (V .u) = v.  ( a n u p )  = 0. 
den 
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To prove (3.6), we shall show that, if it holds for some integer 1 = n, then it also 
holds when I = n + I : 

= v. (an+lu/aen+1) = 0. (3.7) 

Since (3.7) holds when n = 0,  induction proves that (3.6) holds for all n. The same 
kind of simplification applies to any equation simultaneously an identity in e and 
in z ( -  D < z < h(x ;  e ) ) .  This observation, and the remark that hLnl = h(n) is 
enough to establish that 

B(n)(d/2,xo)  = 6 n l y  (3.8a) 

and almost enough to establish that 

[U(")(X,, 4, B(")(x,, 4 1  E A O .  

To establish (3.8b) we must show that 

8B(n)(xo, z o ) p z 0  = 0 on x = - D. 

This follows from induction using the fact that 

(3.8b) 

because x = - D when zo = - D and &I = 0 when z,, = - D. The differential 
equations that follow from (2.1) using the inductipn (3.7) are 

p(u. Vu)(n)  = - V W n )  + e, pagO(n) +,uV2u(n), (u. VO)(n) = K V W ~ )  in K .  
( 3 . 8 ~ )  

No such simplification is possible relative to (2.4) and (2.5) on the free surface. 
These equations are of the form P(x,  h(x, 6 ) )  = 0 and, of course aB(x, z)/8~l,,~(~) 
is not necessarily zero. It follows that free-surface perturbation equations must be 
written in the form 

Repeated apphation of ajaehrnl = h[n+ll in (3.8d) shows 

where 

(3.8d) 

(3.8e) 

Equations (3.8) are boundary-value problems for the partial derivatives 
[ ~ ( n ) ,  B(n), O(n),  in the flat reference domain. It is easy to show that these 
functions can be determined sequentially. 

When n = 0 we have the null solution 

[U[Ol, @OI, @[Ol, h[Ol] = [ U W ,  B ( O > ,  @ ( O ) ,  h(O)] = 0 (3.9) 
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of the rest state. Therefore, the series (3.5) can be started with n = 1. When n = 1 

we have [ w x , ,  z0),  w ( x 0 ,  zO)i E A ~ ,  (3.10) 

0 = -V@.(l)+e,pag8(1)+l~V2~(1), 0 = K V 2 W )  in q, ( 3 . 1 1 ~ )  b)  
(3.12) 

On the free surface, the equations simplify, because of the vanishing of the 
solution at  zeroth order. For example, the normal component of velocity vanishes 
on the free surface at  first order if 

~ [ 1 1  = ~ ( 1 )  - h(l>u(O> = ~ ( 1 )  = 0. (3.13 a )  

e w ( & d ,  zo) = I ,  - D G zo G 0. 

A similar computation for the shear stress gives 

(3.13 b )  

on zo = 0. 
The boundary-value problem (3.10)-( 3.13) is uniquely solvable, and does not 

depend on any of the derivatives of h. We are going to solve this problem in § 5. 
Once we have obtained the solution, we may find h(1) by integrating the normal 

( 3.1 4 a)  

where hW E B. (3.14b) 

3.3. Representations of the solution in % 
The equations for the partial derivatives (u(n), B(n), @(n), h(n)) can be obtained 
by the method of Stokes, which was described in 9 1. We are not aware of an 
explicit discussion, other than that of Joseph (1973), of how to represent the 
solution in K ,  given the partial derivatives defined in Yo. Th: nature of Stokes's 
derivations is such that it is possible that he imagined the solutions in % to be 

(3.15) 

The functions u ( ~ ) ( .  , . ), e(.)(. , . ) and @(a)(. , . ) are the functions first found 
in Yo, then continued analytically, by declaring that (xo, zo) -+ (x, x ) ,  where 

In  fact, the representation (3.15) is implied by (3.5). (See Joseph 1973.) To 
show this, it  is necessary to replace the substantial derivatives in (3.5) with the 
expressions (3.4)) then to rearrange the series, as follows: 

- D < x < h(x, 6). 

@[Ol(Xo, zo; 0)  + €@[ll  + g € W z l +  e3@[31/3! + . . . 
= @ W ( X o ,  zo; 0 )  + €%[11@$) + €2(%[21@$> +%[11%$;)/2! 

+€3(Z[31@$) + 3%[11~[21@$~ +2[115@:$3/3! + . . . + e { W ) ( x 0 ,  zo; 0 )  

+ €%[11@$> + € 2 ( x [ z l @ y  +Z"l"$;/2!) + . . .} 
+ * € 2 { @ ( 2 ) ( X o , x o ;  o)+€x[ l l@y+ ...I+ ... 

= @~0)(x,x(xo, zo; e ) ;  0 )  + € @ ( l ) ( X , X ( X , ,  zo; e ) ;  0 )  + & 2 @ ( 2 ) ( X , Z ( X 0 ,  zo; e ) ;  0) + ... 
= @(x,z;  e).  
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It follows that, given the partial derivatives in the domain Yo, we may compute 
the solution in by the analytic continuation of the functions leading to (3.15), 
or by direct inversion of the mapping function in the arguments of the substantial 
derivative in (3.5). For example, using the linear scaling transformation (3.2), 

Assuming convergence, the series on right of (3.15) and (3.16) sum to the same 
function, but partial sums after N terms are different. This difference leaves open 
the question of the optimal representation for approximate solutions; and we 
have not answered this question. But we have found that the representation (3.16) 
is particularly convenient, for the following reasons. (i) The series (3.16) retains 
the same basic ordering in powers of e as the series (3.5), which gives the solution 
in a fully expanded form. (ii) The inversion of the mapping does not require that 
the functions urn], B[nl or WJ should be continued. For example, the domain of 

u[nJ{x, ( z  - h) D / ( D  + h)}  = u["I(xo, zo) (3.17) the function 

is unchanged under the inversion of the mapping 

-D < ( z -h)D/D+h Q 0. 

(iii) The level lines of the coefficients of (3.16) in Ye bear a simple scaling 
relation to the level lines calculated in K .  I n  particular, under the inversion of 
the mapping the level lines of, say, u[nl(x0, zo) continue to conform to the boundary. 
(See figure 6.) I n  contrast, the level lines of the continued function 

u(n)(x,z) ,  -D < 2 < h(x; e ) ,  

U ( n ) ( X 0 , Z o ) ,  -D < zo < 0. 
bear no simple relation to the level lines of the computed functions 

The analysis of this section, and the comparison of the representations (3.15) 
and (3.16) may be more easily understood by studying the simple example given 
in the appendix. 

4. Computation of the motion in the trench 
We return now to the problem (3.10)-(3.13), governing the slow motion of the 

fluid in the trench. The equations for the temperature do not depend on the 
velocity, and'they may be solved separately: 

(4.1) 

We next calculate the velocity field by substituting (4.1) back into (3.11 a ) ,  and 
converting the remaining part of the problem into a biharmonic edge problem of 
the type solved by Smith (1952). Introducing a stream function $, 

w) = 4 + 0 .  /a 

*.$,, W(f) = - $, XO? u(1> = 
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@,xo = Pv2$,zo, @,zo = pga(xo/d+ +) -PV2?L0-  

Elimination of CD between these two equations leads to 

where 

V4$ =pga/(p4 in %, (4.2a) 

(4.2b) 

To reduce this problem t o  an edge problem, we introduce new (dimensionless) 
variables 

$( ? id, zo) = $,J & Bd, q,) = @(xo, - D )  
= $,zo(xo, - D )  = $I‘(% 0) = $ : z o z o ( ~ o ’  0) = 0. 

The new variables satisfy the equations 

v ~ Y  = o in [-I  < t < 1, - D  < y < 01, (4 .3a)  

(4.3b) 

(4.3G) 

( 4 . 3 4  

.cY,t = +(yl‘,,,t+yyuvL 9J ,y = J---( 3 2  ‘z Y , t t t + Y t y u ) .  (4.4) 

Y( _+ 1,y) = Y,t( _+ 1,y) = 0, 

Y,,(t, -D) = Y,u,(t,O) = 0 

Y(t, 0) = Y(t, -D) = - ( t z  - 1)’/384. and 

Given Y, the dimensionless pressure 9 may be found from 

The solution of the biharmonic problem (4.3) is given by 

where C, = Do = 0. The 8, (n = 1 , 2 ,  ...) are the first-quadrant complex roots of 

sin2S = - 2 8  (4.5b) 

numbered in a sequence corresponding to increasing size of the real part of S, and 
S-, = B,. The functions q5in’(t) are bihsrmonic eigenfunctions (Papkovich-Fadle 
functions), belonging to the eigenvalues 8,. These functions are given by (4.12); 
they satisfy the side-wall boundary conditions (4.3b) when the S, are the roots of 
(4.5b). The coefficients C, and D, are to be chosen so as to make (4.5a) satisfy the 
edge conditions (4.3c, d).  The roots of sin 2s = - 2s are symmetrically located 
in the complex S plane, and the above numbering covers all roots. It follows from 
(4.7) and (4.12) that 

Since the given edge data are real, 

$ p ’ ( t )  = &-n)(t) (n = & 1, + 2 ,  ...). (4.5c) 

- - 
C,=C-,, D,=D-, ( n = & l , + 2  ,... ). (4.5d) 

The problem defined by (4.3) when the trench is infinitely deep ( D  -+ 00) is 
identical to that solved by Smith (1952). It is instructive to give the solution for 
the infinitely deep trench first, then to apply Smith’s method to find the solution 
for the trench of finite depth. 
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4. I. T h e  inJinitely deep trench 

When D -+ m, we replace the boundary conditions on y = - D with the require- 
ment, t,hat @ and all its derivatives tend to zero as y -+ - 03. To satisfy this condi- 
tion, we must have D, = 0 (n = I, & 3, ...). Substituting ( 4 . 5 ~ )  into (4.3 c,d) 

To put hhis edge condit>ion into Smith's form, we different>iate the bottom element 
in the column vector twice, and find t>hat 

where 

To determine the constants C,, we introduce the vectors 

I$(n) and +(n) are defined through the differential equations 

d2 
at2 
- +(n)  + fl2A+(") = 0, 

where 

The boundary conditions are 

(4.7) 

(4.8a) 

(4.8b) 

(4.9) 

These boundary conditions can be sat>isfied when the parameter X satisfies 
(4.5b) or ( 4 . 1 3 ~ ~ ) ;  (4.56) leads to the even eigenfunctions (4.12), whereas ( 4 . 1 3 ~ )  
leads to t,he odd eigenfunctions (4.13b). Using (4.8) and (4.9), we find that 

(4.10) 

Applying the biorthogonality condition (4.10) t'o (4.7), and using ( 4 . 8 b ) ,  we find 
that 
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(4.11) 

where 

(4.12) 

$1,) = S, sin S, cos S, t - S, t cos S, sin S, t = $p', 
$p) = - (S, sin S, + 2 cos S,) cos S,t + Snt  cos 8, sin S,t, 

+p' = (S,  sin S, - 2 cos S,) cos 8, t - S, t cos S, sin 8, t 

are the even eigenfunctions, and Ic, = - 4 C O S ~  S,. When the given data are not 
even, one must also consider the odd eigenfunctions. For these, the eigenvalues 
are roots of 

sin2P = 2P, (4.1 3 a )  
and the eigenfunctions are 

(4.13 b )  i 
$in) = P, cos P, sin P, t - P, t sin P, cos P, t = $in), 

$in) = -(P,cosP,- ~sin~,)sin~,t+P,tsin~~cos~,t, 

$in) = (P, cos P, + 2 sin P,) sin P, t - P, t sin P, cos P, t 

and f ,  = - 4 sin4 P,. 
Finally, after integrating (4.1 l), we find that 

C, = - =& C O S ~  S,. 

The numerical convergence of the partial sum 

N 0 

(4.14) 

(4.15) 

is very rapid (see table 1); and, for practical purposes, the series has converged 
after three terms. Convergence in the interior is even more rapid. Mathematical 
convergence of the series (4.15) is easily verified (see Joseph 1974). 

In figure 1 we have plotted the level lines of the stream function Y(t, y )  for the 
edge problem. These are given by (4.5). We have also shown the streamlines of 
the flow ' 

5 $:")(t) exp (S,  y ) / 1 6 S i  cos4 S,. (4.16) 
-$=-- iu (t2 - 1 ) 2  

P P d 3  384 --oo 

The streamlines are given in the reference domain; they cannot be plotted in the 
physical domain without first finding the first-order height correction ( $ 5 ) .  The 
streamlines in figure 1 show that the edge eddies exist, to turn the stream around 
a t  the free edge. 
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t d t )  N = l  N = 3  N = 5  N = 7  
1.0 2.083 1.948 2.070 2.079 2.081 
0-8 0.958 0.999 0.950 0.955 0.961 
0.6 0.083 0.110 0.863 0.836 0.818 
0.4 -0.541 -0.548 -0.588 -0.540 -0.543 
0.2 -0.916 -0.933 -0.922 -0.919 -0.916 
0 - 1.041 - 1.057 - 1.037 - 1.039 - 1.040 

t f (4 N = l  N = 3  N = 5  N = 7  

1.0 0 0 0 0 0 
0.8 0 2.986 1.434 0.050 -0.323 
0.6 0 5.105 -0.8323 0.1061 0.0864 
0-4 0 2.916 - 0.0656 - 0.1830 0.1582 
0.2 0 - 1.086 +0.5208 0.2174 - 0.0278 
0 0 -3.003 -0.6155 -0.2265 -0.1105 

TABLE 1. Convergence of the Papkovich-Fadle series 

N = 9  

2.083 
0.960 
0.848 

- 0.541 
- 0.916 
- 1.041 

N = 9  

0 
-0.128 
- 0.1202 
- 0.0944 
- 0.0718 
- 0.0631 

The pressure corresponding to (4.5) can be obtained from (4.4) as 

B = - Y ”  - C C, cos Xnsin Snt exp (X, y) + A , .  (4.17) 32 

A, is a constant to be determined from the computation of the free surface. 

4.2. T h e  trench of$nite depth 
We are now considering problem (4.3) with a < co. There is an  edge a t  both the 
bottom and the top of the trench. There are now two sets o f  coefficients (C, and 
D,) to be determined from the edge conditions (4.3c, d ) .  At the top (y = 0) ,  we 
find, using (4.5a), that  
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-- 1.0 0 

FIGURE 1. Level lines of the edge eddies (4.5) and streamlines (4.16) of the flow in the 
reference domain for the infinitely deep trench. 

' The biorthogonality computation, which led to (4.14), now yields 

C, + D, = - C O S ~  S,. (4.20) 

The same computation, applied to (4.191, where the boundary conditions are of 
a slightly different type, does not give the coefficient 

C, exp ( - #,a) + D, exp (S,fi) 
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directly, as in (4.20); instead, it defines that coefficient implicitly through an 
infinite set of algebraic equations linear in the variables C, and D,: 

= (C, exp ( - S,D) + D, exp (8,D)) ( - 4 cos4 X,) 

= Azn (C;exp ( -#,a) - D, exp (8,B)) 

- 4 cos4 S,( C, exp ( - 8, D )  + D, exp (8, D)) ,  
,=-a 

(4.21) 

where 

We can combine (4.20) and (4.21) to get 

00 

= - 1 (1 - exp ( - X,D)) + A,, exp(-szD! for n = +1,  + 2  ,.... (4.22) 
45: 16S,2cos4Xl 

We solved (4.22) by truncation and checked the convergence of the solution 
of the truncated equations numerically. In  all case's considered by us, conver- 
gence is very rapid (see table 2). In  deep trenches the factor exp (S,B) in the first 
term of (4.22) becomes large; it is convenient for computations in the deep trench 
to work with coefficients B, = exp (X,D) Dl which satisfy the relation 

The 

$(t,y) satisfying (4.3) and the real stream function 

are computed from (4.23); then the C, are computed from (4.20). 
We computed coefficients and plotted level lines of the edge stream function 

(4.24) 

for trenches with depth/width ratios of 5 (figure 2), I (figure 3) and $ (figure 4). 
The effect of the edge eddies a t  the top and bottom of the trench extends into the 
interior for a distance of about three times the width of the trench. The flow in the 
centre of the trench with depthlwidth ratio of 5 is nearly the same as the flow far 
below the surface in an infinitely deep trench. 

37-2 
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( t 2 -  1 ) 2  
t 1000 - Y(t, 0; 1) x 1000 Y(t, 0; 5) x 1000 

384 

0 2.6042 2.6194 2.6041 
0.2 2.4000 2.4121 2.4000 
0.4 1.8375 1.8401 1.8375 
0.6 1.0667 1.0580 1.0666 
0.8 0.3375 0.3280 0.3376 
1.0 0 0 0 

( t 2 -  1 ) 2  
t 

2.6042 0 2.6042 2.5131 
0-2 2.4000 2.3446 2.4000 
0-4 1.8375 1-8566 1.8375 
0.6 1.0667 1.1298 1.0666 
0-8 0.3375 0.3757 0.3375 
1.0 0 0 0 

1000 - Y(t, -D;  1) x 1000 Y(t, - D ;  5) x 1000 
384 

TABLE 2. Convergence of the Papkovich-Fadle series in the trench of finite depth 

To compute the streamlines of the flow in the deformed domain, it is necessary 
to compute the shape of the free surface. At this stage, it is only possible to deal 
with quantities defined in the reference domain. 

5. The shape of the free surface 
We turn next to the computation of the first coefficient h(Q(x) in the expansion 

(3.16) of the free surface in powers of 6 .  This coefficient is to be determined as the 
solution of the problem (3.14) subject to contact line or contact angle boundary 
conditions specifiedunder (2.6). Equation (3.14) may be rewrittenin terms of the 
stream function & as 

Under the same change of variables as leads to (4.3), and introducing the 
dimensionless height correction 

, we may rewrite (5.1) as H - u 2 B  = - (ytlJ+PL 
u2 = pgd2/4cr. B is given, through integration of (4.4)) as 

Y N  B = -- I: Cnexp(Sny)cosSnsinSnt+A 
32 - N  

(5 .2)  
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- 1  I 

(4 (b) 
FIGURE 2. Level lines of the edge eddies (4.5) and streamlines (4.24) of the flow in the 

reference domain for the trench of finite depth with a depthlwidth ratio of five. 
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- 1  

\ 1x10-4 / 

FIGURE 3. Level lines of the edge eddies (4.5) and streahlines (4.24) of the flow in the 
reference domain for the trench of finite depth with a depthlwidth ratio of 1. 

- 1.0 oLmi 
1 x 10-4 
1 x 10-5 

- 1.0 

FIGURE 4. Level lines of the edge eddies (4.5) and streamlines (4.24) of the flow in the 
reference domain for the trench of finite depth with a depthlwidth ratio of Q. 
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A is a constant to be determined. Equation (5.3) reduces to (4.17) when D -+ 00. 

Using (4.5) and (5.3), we rewrite (5 .2)  as 

N 

- N  
H”- a2H + d = s C,[(S, sin S, + 2 cos S,) sin S,t + Snt cos S, cos S,t] 

N A  + 2 D,exp(-S,D)cosS,sinS,t. (5.4) 
- 7%’ _. 

The general solution of (5.4) is 

sin S,t H = B1exp(at)+Bzexp(--at)+-- A [(Snsin2;psSn) 
a2 C, 

-N 

t cos S, t ZS, sin S, t 
(a2 + fl: )2 

N *  cos s, 
-N a2 + s: - C D,exp(-S,a)- sinS,t. (5 .5 )  ’ 

The last step in the evaluation of the height correction at  first order is the 
application of the side conditions (2.6). In dimensionless variables, we may write 
the condit,ion that h(z) should have a zero mean value as 

H d t  = 0. s’, 
When the trench is filled to the top with liquid, and the liquid adheres to sharp 
edge, we have 

From (5.5)-(5.7), we find that 
H(  & 1) = 0. (5.7) 

where 

11 cos S, 2S, sin S, 
sin S, + S, cos S, 

b - 1 ( f j  C, [S,sinSn+2cosSn 
sinha - N  a2 + As; 

sin S, sinh at 
sinh a 

sin S, t - 

cos S, sinh at 
sinh a 

N S,, sin S, + 2 cos 8, 
and H = - s Cn( 

- N  a2 + s:& 
s, cos s, 

+ a2+Si 
t cos s,t - 

sin S, sinhat 
sinh a 

sin S, t - 2s; cos s, 
(a2 + s:)2 - 

sin Sn sinh at 
sinh a 

sin S, t - - 3 D,exp(-S,a)--- 
N *  cos s, 

- N  a2 + Is: 
When the trench is partially filled with liquid and an angle of flat contact is 
specified, H’( & 1) = 0, 

we find, using (54, (5.6) and (5.9), that 

(5.9) 

A = 0, Bl = -B2 = +b, 
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FIGURE 5 .  Graphs of the free-surface correction H ( t )  forethe infinitely deep trench. (a)  The 
free surface on a liquid which adheres to the edge of the trench ((5.10) with D = co). ( b )  
The free surface on a liquid when a flat slope of the free surface a t  the wall is prescribed. 

-11 ( a2+s: (a2 + 
cos S, - S, sin S, 2s: cos S, - + S, cos S, 

S, cos S, sinh at 
a cosh a 

sin Snt - 
N S, sin S, + 2 cos S, 

{ a2+b2 
and H = - C C, 

- N  

8, cos s, (cos Sn - S, sin S,) sinh at 

S,, cos S, sinh at 
a cosh a 

+= (tcossnt-  a cosh a 

sin S, t - 
2s: 60s S, 
(a2 + - 

). (5.10) 
S, cos 8, sinh at 

a cosh a 
sin S,t - 

N cos S, - c Bnexp(-SnD)- 
- N  a2 + 8: 
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4a2 H,, for H (  f 1) = 0 H,, for H’( ? 1) = 0 

0-01 3.68 x 10-4 4-08 x 10-4 
0.10 1.03 x 10-3 2.55 x 10-3 
1.0 1.26 x 10-3 4.75 x 10-3 

10.0 1.29 x 10-3 5.19 x 10-3 
100.0 1.29 x 10-3 5.24 x 10-3 

TABLE 3. The maximum value of the height rise coefficient H(t ;  a2) as a function of a2. When 
the fluid sticks to the edge H(  f 1) = 0, the maximum deflexion occurs for 0 < t < 1. When 
an angle of flat contact is prescribed, H( f 1) = 0, the maximum height rise is at t = 1 

t 

0 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

H x 103 (given by (6.8)) H x lo3 (given by (6.10)) 

0.00 0.00 
0.35 0.81 
0.67 1.59 
0.95 2.32 
1-14 2.98 
1.25 3.55 
1.24 4.02 
1.11 4.37 
0.85 4.60 
0.48 4.72 
0.00 4.75 

TABLE 4. The correction coefficients for the free surface on a liquid in a trench with a depth/ 
width ratio of 8. The first column is for prescribed contact line problem (5.8). The second 
column is for the prescribed contact angle problem with a flat contact 

In figure 5 we have plotted the correction coefficient H for the free surface in an 
infinitely deep trench. (See table 3.) This coefficient is the dimensionless form of 
I&); and the free surface is given by h(x, 6) = h(% + O(e2) .  Figure 5 (a )  gives the 
graph of H when the fluid grips the edge. Figure 5 ( b )  gives the graph of H when 
the fluid surface is perpendicular to the side walls. Given h(l), we may give 
explicit form to the shifting transformation 

(5.11) 

Then, by inverting the mapping as in 5 3, we may obtain, a t  lowest order, the 
form of the streamlines in the deformed domain. 

In figure 6 we have carried out this inversion graphically. The streamlines of 
the flow in the reference domain are determined independently of the height rise, 
as in figure 6(a) .  To obtain the streamlines in the deformed domain, we must 
compute the shape of the free surface. Values of the function H ,  giving h(Q, for 
a depthlwidth ratio of 4 are given in table 4. Since the trench of figure 6 has a 
bottom, we obtain the stream function 
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- 
0 

- 1.0 

(c) 

FIGURE 6. Streamlines in a trench with a depth/width ratio of 4. ( a )  Streamlines in the 
reference domain. ( b )  Streamlines in a deformed domain when the liquid adheres to the edge 
of the trench. (c) Streamlines in a deformed domain when a flat slope at  the wall is prescribed. 
The streamlines in ( b )  and ( c )  are the distortions of the level lines of ( a )  under the scaling 
transformation (5.12). 

by inverting the scaling transformation 

z0 = B[h - z]/[B + h] .  

@(x, X ;  8 )  = $(I)(z, B[h- z]/[B + h])  F + O(e2), 

- B < x < h = h(l)e + O(e2). 

Then 

’ where 

(5.12) 

The shape of the streamlines in the interior depends on e through h(x, e )  alone. 
The inversion (5.12) of the stretching transformation will generate a different 
distortion of the level lines of @(V(q,,zO) for each function h(z; e )  2: h(%. In 
figures 6 ( b ) ,  (c) ,  we have sketched two such distortions, corresponding to case 
6 (b ) ,  in which the fluid grips the edge, and the case 6 (c), in which the fluid surface 
is perpendicular to the side walls. More flow patterns could be obtained from 6 (a ) ,  
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by generating different height corrections through varying the boundary condi- 
tions h(x; s) at the side walls. 

This work was supported under NSF grant GK- 12500. 

Appendix. Domain perturbations for a simple example 

concepts introduced in 3 3: 
Consider the following simple problem which we have invented to illustrate the 

V2G(z ,y;  e) = 0 in = [x,yl -co < x < 03, 0 d y 6 h(x; s ) ] ,  (A l a )  

(A I b )  

(A l c )  

G(x, h; e )  = e sin x, 

G(x, 0; 6 )  = G(x, y; 8) - G(x + 2 ~ ,  y; 6 )  = 0, 

y is a constant. The linear scaling transformation x = xo, y = yoh(x; e) /D (see 
3 .2b)  is used to map "y-, onto 

ryo = [xo,yol -co < xo < co, 0 d yo < 03. 
Series solutions of (A I), analogous to (3.15) and (3.16), are 

(A 2) 
where G[Ol = G(O> = 0 and h(O> = hrol = B. (A 3) 

Substantial derivatives following the mapping are'formed as in (3.4) : 

h(1) 
GI11 = ($1) + y[llG:ii = G(1) +-y D 0 .Yo = G(l)(x o> Yo), 

= G(2)(xo, yo) + 2 -jj- yoG$~(xo, YO). 

(A 4) 

($21 = G(2) + 2y[llGy) + y[2lG(O) + y[1l2G(O> 
YO , VO 3 IloYo 

h(l) 
(A 5) 

It is not hard to carry out computations to higher order; but the computation 
up to order two will suffice for our purpose. 

The boundary-value problems for the function G(n)(xo, yo), n 1, are 

V2G(n) = 0 in Yo, 
G[nJ(xo, D) = Sn, sin xo, 

G(n)(xo, 0) = G(n)(xO, yo) - G ( n ) ( ~ o  + 2 ~ ,  yo) = 0, 

h(")(xo) = yH[nl. 

Whenn = 1, V2G(1) = 0, 

G[ll(xo, D) = G(4(xo, D) = sinx,, 

G(Q(x0, 0) = G(l)(x0, yo) - G(l)(x0 + 2 ~ ,  yo) = 0. 
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Hence, 

and 

When n = 2, 

G[21(~o, D) = 

Hence, 

and 

cosh yo Yo G[21 = G(2) + y - coth D - 
D sinh D (1  - cos 2x0), 

Now we are going to  compare the two expressions for G(x, y; e) given by (A 2 )  
up to  terms of order two. The series using the continuation of the functions 
G(%)(x0, yo) into is 

~ ( 2 ,  y; e )  = e~(i)(X, y) + +e2~(2) (~ ,  y) + o(e3) 

cos2x +0(83). (A 8) 1 y sinh2y 
D sinh2D 

sin x - &e2y coth2 D 
sinh Y 
sinh D 

=e- 

On the other hand, the series of substantial derivatives, using the mapping 
principle, is 

G(x, y; E) = eGC11(x, yD/h) + +e2G[2J(x, yD/h) + O(e3) 

1 y sinh2yDlh 
h sinh2D 

sinh yD/h sin x - y coth2 D cos 22 = €  
sinh D 

+ +e2 y !! coth D cash yD/h(i-cos2x)+0(e3). (A 9) 
h sinh D 

Equations (A 8) and (A 9) are representations of the same function. To recover 
(A 8) from (A 9), hold y fixed in (A 9), and expand h(x; 6 )  in powers of e,  using 
(A 2), (A 6 b )  and (A 7 c ) .  

On the boundary y = h(x; E ) ,  (A 8) reduces to 

c0s2x +o(e3), (A 10) 1 h sinh2h 
D sinh2D 

sinx - $e2 y coth2 D 
sinh h 
sinh D 

G(s, h; 6 )  = c - 

whereas, (A 9) reduces to  
G(x, h; e) = esinx. 

Superficially, it appears that  the series (6.10) does not satisfy the boundary 
condition (A l b ) .  However, 

h = h(x; e )  = eh(l)(x) + +e2h(2)(x) + O(e3); 

and, when (A 10) is re-expanded in powers of E, it does take on the prescribed 
form. 
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